
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Lemont, IL 60439

Stochastic Derivative-Free Optimization Using a Trust
Region Framework1

Jeffrey Larson and Stephen C. Billups

Mathematics and Computer Science Division

Preprint ANL/MCS-P5268-0115

January 2015 (Revised January 2016)

1This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under contract number DE-AC02-
06CH11357.

Stochastic Derivative-Free Optimization Using a Trust Region

Framework

Jeffrey Larson Stephen C. Billups

March 7, 2016

Abstract

This paper presents a trust region algorithm to minimize a function f when one has access only
to noise-corrupted function values f̄ . The model-based algorithm dynamically adjusts its step length,
taking larger steps when the model and function agree and smaller steps when the model is less accurate.
The method does not require the user to specify a fixed pattern of points used to build local models
and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and
identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates
such that the corresponding function gradients converge in probability to zero. We present a prototype of
our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark
problems in fewer function evaluations than do existing stochastic approximation methods.

1 Introduction

In this article, we propose and analyze an algorithm that minimizes an unconstrained function f : Rn → R
when no reliable information about ∇f is available and noise is present in the function evaluations. That is,
the value of f at a given point x cannot be observed directly; rather, the optimization routine can access only
a noise-corrupted function value f̄(x). Such noise may be deterministic (for example, as a result of using
iterative methods) or stochastic (for example, from Monte Carlo simulations). We analyze the convergence
of the algorithm in the case of stochastic noise. In particular, for our analysis we assume that the computed
function values have the form

f̄(x) = f(x) + ε,

where the noise ε is drawn independently from a distribution with mean 0 and variance σ2 <∞. Since the
mean of the noise is zero, this is equivalent to solving

minimize
x

E
[
f̄(x)

]
. (1)

Various methods for solving (1) have been presented in the literature. Stochastic approximation techniques—
for example, the classical Kiefer-Wolfowitz algorithm [14] or the more recent simultaneous perturbation
stochastic approximation algorithm [24]—generate iterates of the form

xk+1 = xk + akG(xk),

where G(xk) is a finite-difference estimate for ∇f(xk) and ak is the step size. These methods have been
shown to converge to a stationary point under suitable conditions. This convergence is slow, however,
because the step sizes are chosen a priori. An alternative to stochastic approximation methods has been
developed in the experimental design community, for example in the response surface methodology literature
(first presented by [5]). Response surface methods often build models by using a fixed pattern of points,
for example cubic, spherical, or orthogonal designs [19]. However, determining a design that constructs
response surfaces adequately approximating the function without requiring excessive function evaluations

1

can be difficult for problems where the user has no prior expertise. Moreover, convergence analysis of these
methods is lacking.

Another possibility for solving (1) is to repeatedly sample f̄ in order to more accurately approximate f
at points of interest. This approach has been used in conjunction with stochastic approximation methods
[12] and response surface methodologies [6], as well as with algorithms originally designed for deterministic
derivative-free optimization. For example, Deng and Ferris [9] modify Powell’s UOBYQA algorithm [22],
Tomick et al. [26] modify the Nelder-Mead algorithm [21], and Deng and Ferris [10] modify the DIRECT
algorithm [13] all by repeatedly sampling f̄ to deduce information about f . None of these papers provide
convergence proofs.

We find such repeated sampling to be undesirable for two reasons. First, repeated function evaluations
at a point x provide information only about the noise ε and no information about the behavior of the
function f near x. Because many points of interest will be far from the optimum of f , refining the estimate
of f(x) at such points wastes computational resources. Second, if the noise in f̄ is deterministic rather
than stochastic, repeated evaluations of f̄ provide no additional information, because the same value will be
returned every time. In such a case, evaluating f at nearby points is the only recourse. (Deterministic noise
is less understood than its stochastic counterpart, but it has been addressed in [17, 18, 20].)

In this paper, we propose an algorithm for solving (1) that dynamically adjusts its step sizes, does not use
a fixed pattern of points to build models, and does not repeatedly sample f̄ to gain information about f . We
base our algorithm on model-based trust region methods, one of the most successful classes of methods for
solving problems without derivative information [23]. We believe such methods will be similarly useful when
the function evaluations are corrupted by noise. Information about f is gathered by building models using
function values from points in the region of interest. This approach allows the algorithm to take larger steps
when the models are accurate and more conservative steps when the models are less accurate in predicting
the behavior of f .

We prove that under reasonable smoothness and noise assumptions, our algorithm produces iterates {xk}
such that ∇f(xk) converges in probability to zero. We present numerical comparisons of three stochastic
approximation methods and a prototype of the proposed algorithm on a benchmark set of optimization
problems containing significant stochastic noise. The prototype of our trust region method outperforms
these methods, even though it does not retain previously evaluated points from any past iteration.

Derivative-free trust region methods construct a model function at each iteration that approximates the
objective function in a trust region B(xk; ∆k) around the current iterate xk (where ∆k denotes the trust
region radius). This model function is minimized over the trust region to determine the next iterate. Each
model function can be constructed by interpolation or regression to fit previously evaluated function values
on a set of nearby sample points. In the presence of noise, these models are random functions. In [2],
Bandeira et al. consider the convergence of trust region methods based on probabilistic models. However,
their analysis relies on the assumption that exact function values are evaluated (the randomness in their
models comes from choosing sample points randomly, rather than from noise in the function evaluations).
In contrast, our algorithm must overcome the difficulty that exact function evaluations are not available.

The method proposed in this paper differs markedly from previous attempts in the literature to implement
trust region methods in order to optimize functions with inexact evaluations. The recent algorithm QNSTOP
[1] is a quasi-Newton trust region method that builds regression models of evaluated points. The algorithm
requires the user to declare a sequence of decaying trust region radii to ensure convergence. (In [1], the

authors suggest ∆k = 2∆
7/16
0 (k + 1)−7/16, where ∆0 is the initial trust region radius.) Bastin et al. [3]

propose a trust region method to compute parameters for mixed logit models, which are evaluated by using
a Monte Carlo approximation. Their method achieves convergence by using increasingly larger sample sizes
in the Monte Carlo simulations to obtain increasingly greater accuracy in the function evaluations. The
STRONG method of Chang et al. [6] combines traditionally heuristic response surface methodologies with
a trust region method. The method computes estimates of the function (and possibly gradient) values by
averaging multiple replications of a simulation. Convergence is ensured by an inner loop that increases the
number of replicates to achieve greater accuracy. Both Bastin et al.’s method and STRONG rely on repeated
sampling, which is explicitly avoided in our algorithm. We also note similarities between our approach and

2

the recently proposed method of Chen et al. [7], which uses a similar trust region framework; however, their
assumptions and analysis differ from our approach.

The structure of the paper is as follows. In Section 2, we provide some preliminary results and definitions.
We then outline the algorithm in Section 3. In Section 4, we prove convergence of our algorithm provided the
function, noise, and algorithmic constants satisfy certain assumptions. In Section 5, we discuss numerical
experiments. A summary and appendix of results conclude the paper.

We use the following notation in this paper. Let R denote the set of all reals, and let Pdn be the set of
polynomials in Rn with degree at most d. The ball of radius ∆ centered at x ∈ Rn is denoted B(x; ∆). Let
‖ · ‖ denote the Euclidean norm. Ck denotes the set of functions on Rn with k continuous derivatives, LCk

denotes the set of functions in Ck such that the kth derivative is Lipschitz continuous, and ej denotes the
jth column of the identity matrix. For F : Rn → Rm, m > 1, ∇F (x) denotes the m × n Jacobian matrix;
however, for f : Rn → R, the gradient ∇f(x) is interpreted as a column vector.

2 Background

Traditional trust region methods use derivative information to construct a local approximation mk of the ob-
jective function at every iterate xk. When derivatives are unavailable, the model function can be constructed
by interpolation or regression using a set of points Y = {y0, . . . , yp} where the function has previously been

evaluated. The model functions have the form m(x) =

q∑

i=0

µiφi(x), where φ = {φ0, . . . , φq} is a basis for the

space of possible model functions. To construct the model function, we define the design matrix by

M = M(φ, Y) =

φ0(y0) φ1(y0) · · · φq(y
0)

φ0(y1) φ1(y1) · · · φq(y
1)

...
. . .

...
φ0(yp) φ1(yp) · · · φq(y

p)

 . (2)

If M has full column rank, the sample set is said to be poised, in which case the coefficients µ = [µ0, . . . , µq]
T

of the model function can be determined by solving the system

M(φ, Y)µ = f̄ , (3)

where f̄ =
[
f̄(y0), . . . , f̄(yp)

]T
denotes the computed function values at the sample points. For interpolation

models, the number of sample points p+ 1 = |Y | is equal to the dimension q+ 1 of the model function space.
In this case, M is a square matrix; and if Y is poised, µ = M−1f̄ . For regression models, p+ 1 > q+ 1, (3) is
solved in the least-squares sense, with solution µ = M+f̄ , where M+ = (MTM)−1MT is the pseudoinverse
of M .

2.1 Regression Lagrange polynomials

An important tool for analyzing of regression models is regression Lagrange polynomials [8].

Definition 1. Given a sample set Y = {y0, . . . , yp} with p > q, a set of polynomials `j(x), j = 0, . . . , p in
Pdn is called a set of regression Lagrange polynomials with respect to the sample set Y if for each j, `j is a
least-squares solution to the equations

`j(y
i) =

{
1, if i = j
0, if i 6= j

, i = 0, . . . , p.

The following properties of regression Lagrange polynomials are developed in [8].

3

Lemma 1. [8, Lemma 4.5 & page 62] If Y is poised, then the set of regression Lagrange polynomials exists
and is uniquely defined. In fact,

`(x) = (MT)+φ(x),

where `(x) = (`0(x), . . . , `p(x))T and (MT)+ = M(MTM)−1 is the pseudoinverse of MT .

Lemma 2. [8, Lemma 4.6] For any function f : Rn → R, if Y is poised for regression, the unique polynomial
m(x) that approximates f(x) by least-squares regression at the points in Y can be expressed as

m(x) =

p∑

i=0

f(yi)`i(x).

This lemma clearly shows that the geometry of the sample set plays a crucial role in the quality of the
model function produced by least-squares regression. Specifically, with respect to sensitivity to errors, one
should choose the sample points in such a way that the Lagrange polynomials have small absolute values.
This leads to the following definition from [8]:

Definition 2. Let Λ > 0 and let a set B ⊂ Rn be given. Let φ = {φ0, . . . , φq} be a basis for Pdn. A poised
set Y = {y0, . . . , yp} with p+ 1 > q+ 1 points is said to be strongly Λ-poised (in the regression sense) on B
if and only if

q + 1√
p+ 1

Λ ≥ max
x∈B
‖`(x)‖ ,

where `(x) = [`0(x), . . . , `p(x)]
T

.

We focus on regression models because stochastic noise is present in our function evaluations. For
simplicity, only first-order polynomials (q = n) will be considered in this paper. We recall the following
definition from [8] that characterizes model functions that behave similarly to Taylor approximations of f
in a given neighborhood.

Definition 3. Let f ∈ LC1 be given. Let κ = (κef , κeg, ν
m
1) be a given vector of constants, and let ∆ > 0 be

given. A function m ∈ LC1 with Lipschitz constant νm
1 is a κ-fully linear model of f on B(x; ∆) if, for all

y ∈ B(x; ∆),

‖∇f(y)−∇m(y)‖ ≤ κeg∆, and

|f(y)−m(y)| ≤ κef∆
2.

2.2 Random models

When noise is present, the model functions {mk} constructed from interpolation or regression are necessarily
random models. Consequently, the iterates {xk}, the trust region radii {∆k}, and the solutions {sk} to the
trust region are also random quantities. For convenience, we do not distinguish notationally between the
random quantities and their realizations; however, this distinction should be clear from context.

The concept of κ-fully linear models was generalized to random models in [15] and [2]; the following
definition is adapted from [2]. Let Fk denote the realizations of all the random events for the first k
iterations of the algorithm.

Definition 4. Let κ = (κef , κeg, ν
m
1) be a given vector of constants, and let α ∈ (0, 1). Let ∆ > 0 be given.

A random model mk generated at the kth iteration of an algorithm is α-probabilistically κ-fully linear on
B(x; ∆) if

P
(
mk is a κ-fully linear model of f on B(x; ∆)

∣∣Fk−1

)
≥ α.

Many types of general models can be used; the models do not have to be linear. All that is required is that
the models approximate the function in a manner similar to Taylor models with a certain probability and
that they generate trust region subproblems that can be solved accurately. Proposition 3 in the appendix
shows that linear models regressing enough points that are strongly Λ-poised are α-probabilistically κ-fully
linear.

4

3 Algorithm

The algorithm presented here requires several elements. First, at each iteration, a model function mk is
constructed that approximates f on the trust region B(xk; ∆k). To prove convergence, we require that
for some κ = (κef , κeg, ν

m
1) and for all k sufficiently large, {mk} is α-probabilistically κ-fully linear on the

corresponding sequence {B(xk; ∆k)} of trust regions where α is a certain threshold satisfying

α ≥ max

1

2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

] , 1− 1− γdec

2(γ2
inc − γdec)

 , (4)

and where γinc and γdec are parameters in the algorithm. As a reference, the choices γinc = 2 and γdec = 0.5
imply that α ≥ 0.9, whereas γinc = 2 and γdec = 0.9 imply that α ≥ 0.845.

In our implementation of our algorithm presented in Section 5, mk is a linear function determined by
least-squares regression on a strongly Λ-poised sample set Yk ⊂ B(xk; ∆k) consisting of at least ck/∆

4
k points,

where {ck} is a positive sequence diverging to +∞. Proposition 3 in the appendix demonstrates that this
method of constructing mk satisfies the above requirement.

After the model function has been constructed, a trial step sk is determined by solving the trust region
subproblem

min
‖s‖≤∆k

mk(xk + s).

To determine whether to accept the trial step, we require estimates F 0
k and F sk of the function values

f(xk) and f(xk + sk), respectively. To prove convergence, we assume that the estimates satisfy the following
conditions, where β and η are parameters in Algorithm 1.

Condition 1: There exists k̄ such that for all k > k̄,

P
[∣∣F 0

k − f(xk) + f(xk + sk)− F sk
∣∣ > βηmin

{
∆k,∆

2
k

} ∣∣∣Fk−1

]
≤ 1− α. (5)

Condition 2: There are constants θ > 0 and k̂ such that for all k > k̂ and ξ > 0,

P
[
F 0
k − f(xk) + f(xk + sk)− F sk > (βη + ξ) min

{
∆k,∆

2
k

} ∣∣∣Fk−1

]
≤ θ

ξ
. (6)

In our implementation, we compute F 0
k and F sk by constructing linear models by least-squares regression as

follows. Let {ck} and {ak} be positive sequences such that ck → +∞ and ak ↓ 0, and define δk = min{∆k, 1}.
Choose strongly Λ-poised sample sets Y 0

k ⊂ B(xk; akδk) and Y sk ⊂ B(xk + sk; akδk) with at least ck/(a
5
kδ

4
k)

points in each set. Let m0
k and ms

k be the linear polynomials determined by least-squares regression on the
sample sets Y 0

k and Y sk , respectively. Define F 0
k = m0

k(xk) and F sk = ms
k(xk + sk).

Proposition 2 in the appendix demonstrates that Conditions 1 and 2 are satisfied by this method of
constructing the function estimates F 0

k and F sk .
The algorithm measures the accuracy of the model mk by comparing the ratio of decrease F 0

k−F sk and the
model’s predicted decrease mk(xk)−mk(xk+sk). When this ratio is sufficiently positive, mk is considered to
sufficiently predict the behavior of f near xk, and the trust region radius for the next iteration is increased.
On the other hand, if the ratio is not sufficiently positive, the next iteration will use a smaller trust region
radius.

We define an iteration where xk+1 = xk + sk to be successful and any iteration where xk+1 = xk to
be unsuccessful. For ease of analysis, we assume that our models are α-probabilistically κ-fully linear every
iteration, although a practical algorithm would likely force the models to be good only when the algorithm
stops progressing.

5

Algorithm 1: Trust region algorithm for minimizing a stochastic function.

Pick 0 < γdec < 1 < γinc, 0 < η, β < 1, 0 < ∆0, and α ∈ (0, 1), satisfying (4). Set k = 0;
Start
Build an αk-probabilistically κ-fully linear model mk on B(xk; ∆k) for some αk ∈ (0, 1) such that
αk ≥ α for sufficiently large k;

Compute sk = arg min
s:‖s‖≤∆k

mk(xk + s);

if mk(xk)−mk(xk + sk) ≥ βmin
{

∆k,∆
2
k

}
then

Calculate ρk =
F 0
k − F sk

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then

xk+1 = xk + sk; ∆k+1 = γinc∆k;
else

xk+1 = xk; ∆k+1 = γdec∆k;
end

else

xk+1 = xk; ∆k+1 = γdec∆k;
end
k = k + 1 and go to Start;

4 Convergence Analysis

We first establish a lower bound on the decrease of the model function at each iteration.

Lemma 3. If a model mk has a Lipschitz continuous gradient with Lipschitz constant νm
1 , then

mk(xk)−mk(xk + sk) ≥
∥∥∇mk(xk)

∥∥
2

min

{∥∥∇mk(xk)
∥∥

2νm
1

,∆k

}
. (7)

Proof. Define gk = ∇mk(xk) and θ(t) = mk(xk − tgk). By the mean value theorem,

mk(xk)− θ(t) = t∇mk(ξ(t))T gk ≥ t
∥∥gk
∥∥2 − t

∥∥gk −∇mk(ξ(t))
∥∥∥∥gk

∥∥ ,

where ξ(t) is a point on the line segment connecting xk to xk − tgk.
By assumption,

∥∥gk −∇mk(ξ(t))
∥∥ ≤ νm

1 t
∥∥gk
∥∥. Thus,

mk(xk)− θ(t) ≥ t
∥∥gk
∥∥2 − t2νm

1

∥∥gk
∥∥2
.

Note that the right-hand side is a concave quadratic function of t, which is maximized by t∗ =
1

2νm
1

, yielding

a value of

∥∥gk
∥∥2

4νm
1

.

If
∥∥gk
∥∥ ≤ 2νm

1 ∆k, then t∗
∥∥gk
∥∥ ≤ ∆k. Recalling that sk = arg min

s:‖s‖≤∆k

mk(xk + s) yields the inequality

mk(xk)−mk(xk + sk) ≥ mk(xk)− θ(t∗) ≥
∥∥gk
∥∥2

4νm
1

.

If
∥∥gk
∥∥ > 2νm

1 ∆k, then

mk(xk)−mk(xk + sk) ≥ mk(xk)− θ
(

∆k

‖gk‖

)
≥ ∆k

∥∥gk
∥∥− νm

1 ∆2
k ≥ ∆k

∥∥gk
∥∥

2
.

In either case, (7) is satisfied.

6

For the remainder of this section, we make the following assumptions.

Assumption 1. The additive noise ε observed when computing f̄ is drawn from a distribution with mean
zero and finite variance.

Assumption 2. f has bounded level sets and ∇f is Lipschitz continuous with constant Lg.

We now prove that if Assumptions 1–2 are satisfied, then the algorithm generates iterates {xk} such
that ∇f(xk) converges in probability to zero. For the sake of clarity, we first outline the logic used to prove
convergence.

• Lemma 4 shows that the sequence of trust region radii {∆k} from Algorithm 1 goes to zero almost
surely.

• Lemma 5 shows that for k sufficiently large, if ∆k falls below some constant multiple of the model
gradient, then the step will be successful with high probability.

• Theorem 1 proves that the sequence of gradients
{
∇f(xk)

}
converges in probability to zero.

Lemma 4. If f has bounded level sets and the estimates F 0
k and F sk are constructed to satisfy Conditions 1

and 2 for α satisfying (4), then
∞∑

k=0

∆2
k <∞

almost surely (and therefore ∆k → 0 almost surely as well).

Proof. Let θ and k̂ be as defined in Condition 2. Let ν =
1− γdec

4θ + 2(1− γdec)
, and define ϕ(x,∆) = νf(x) +

(1− ν)∆ min {1,∆}. For k ∈ N, define δk = min{1,∆k} and ξk =
f(xk + sk)− f(xk)

∆kδk
.

For a successful step, xk+1 = xk + sk and ∆k+1 = γinc∆k. Thus,

ϕ(xk+1,∆k+1)− ϕ(xk,∆k) = ν
(
f(xk + sk)− f(xk)

)
+ (1− ν) (∆k+1δk+1 −∆kδk)

≤ νξk∆kδk + (1− ν) (γinc∆k min{1, γinc∆k} −∆kδk)

≤ νξk∆kδk + (1− ν)(γ2
inc − 1)∆kδk

=
(
νξk + (1− ν)(γ2

inc − 1)
)

∆kδk. (8)

For an unsuccessful step, xk+1 = xk and ∆k+1 = γdec∆k. Thus,

ϕ(xk+1,∆k+1)− ϕ(xk,∆k) = (1− ν) (γdec∆k min{1, γdec∆k} −∆k min{1,∆k})
≤ (1− ν)(γdec − 1)∆kδk. (9)

Let πk denote the probability that the kth step is successful given Fk−1. Then,

πk = P
[
mk(xk)−mk(xk + sk) ≥ β∆kδk

∣∣∣Fk−1

]
P
[
ρk ≥ η

∣∣∣Fk−1,mk(xk)−mk(xk + sk) ≥ β∆kδk

]

≤ P
[
ρk ≥ η

∣∣∣Fk−1,mk(xk)−mk(xk + sk) ≥ β∆kδk

]

= P
[
F 0
k − F sk ≥ η

(
mk(xk)−mk(xk + sk)

) ∣∣∣Fk−1,mk(xk)−mk(xk + sk) ≥ β∆kδk

]

≤ P
[
F 0
k − F sk ≥ ηβ∆kδk

∣∣∣Fk−1

]

= P
[
F 0
k − f(xk) + f(xk)− f(xk + sk) + f(xk + sk)− F sk ≥ ηβ∆kδk

∣∣∣Fk−1

]

= P
[
F 0
k − f(xk) + f(xk + sk)− F sk ≥ (ηβ + ξk)∆kδk

∣∣∣Fk−1

]
. (10)

7

Suppose ξk > 0. By (5) with α satisfying (4), there is a constant k̄ such that for all k > k̄,

P
[∣∣F 0

k − f(xk) + f(xk + sk)− F sk
∣∣ > βηmin

{
∆k,∆

2
k

} ∣∣∣Fk−1

]
≤ 1− α ≤ 1− γdec

2(γ2
inc − γdec)

.

Combining this with (6) and (10), we conclude that for all k > max{k̄, k̂},

πk ≤ min

{
θ

ξk
,

1− γdec

2(γ2
inc − γdec)

}
. (11)

Combining (8), (9), and (11) yields the following inequality for k > max{k̄, k̂}:

E
(
ϕ(xk+1,∆k+1)− ϕ(xk,∆k)

∣∣∣Fk−1

)

∆kδk
≤ πk

(
νξk + (1− ν)

(
γ2

inc − 1
))

+ (1− πk)(1− ν) (γdec − 1)

= πkνξk + (1− ν) (γdec − 1) + πk(1− ν)
(
γ2

inc − γdec

)

≤ νθ + (1− ν) (γdec − 1) +
1− γdec

2 (γ2
inc − γdec)

(1− ν)
(
γ2

inc − γdec

)

= νθ + (1− ν)
(γdec − 1)

2

=
γdec − 1

2
+ ν

(
θ +

1− γdec

2

)

=
γdec − 1

2
+

(
1− γdec

4θ + 2(1− γdec)

)(
2θ + (1− γdec)

2

)

=
γdec − 1

4
.

In the case when ξk ≤ 0, combining (8) and (9) and noting that ν < 1/2, we have the inequality

E
(
ϕ(xk+1,∆k+1)− ϕ(xk,∆k)

∣∣∣Fk−1

)

∆kδk
≤ πk

(
νξk + (1− ν)

(
γ2

inc − 1
))

+ (1− πk)(1− ν) (γdec − 1)

≤ (1− ν) (γdec − 1) + πk(1− ν)
(
γ2

inc − γdec

)

≤ (1− ν) (γdec − 1) +
1− γdec

2 (γ2
inc − γdec)

(1− ν)
(
γ2

inc − γdec

)

= (1− ν)
(γdec − 1)

2

<
γdec − 1

4
.

Combining the two cases above, for k > max{k̄, k̂} we have

E
(
ϕ(xk+1,∆k+1)− ϕ(xk,∆k)

∣∣∣Fk−1

)
≤ γdec − 1

4
∆kδk.

Since f is bounded below, it follows that
∞∑

k=0

∆kδk <∞ almost surely. This implies that ∆k < 1 for all but

finitely many k, so

∞∑

k=0

∆2
k <∞ almost surely.

Lemma 5. Let κ = (κef , κeg, ν
m
1), and let α ∈ (0, 1) be given. Let η and β be the constants specified in the

algorithm. Then for k sufficiently large, if

8

∆k ≤ min

{ ∥∥∇f(xk)
∥∥ (1− η)

(1− η)κeg + 2(2κef + βη)
,

∥∥∇f(xk)
∥∥

2νm
1 + κeg

}
, (12)

then ρk ≥ η with probability at least 2α− 1.

Proof. For any k, since the model is α-probabilistically κ-fully linear, then with probability at least α, both
the following inequalities hold for all x ∈ B(xk; ∆k).

‖∇f(x)‖ − κeg∆k ≤ ‖∇mk(x)‖ (13)

|f(x)−mk(x)| ≤ κef∆
2
k. (14)

In this case

∆k ≤
(∥∥∇f(xk)

∥∥− κeg∆k

)
(1− η)

2(2κef + βη)
≤
∥∥∇mk(xk)

∥∥ (1− η)

2(2κef + βη)
, (15)

where the first inequality is implied by (12) and the second is a direct application of (13). Similarly, from
(12) and (13),

∆k ≤
∥∥∇mk(xk)

∥∥
2νm

1

.

Thus, by Lemma 3,

mk(xk)−mk(xk + sk) ≥
∥∥∇mk(xk)

∥∥
2

∆k. (16)

By the definition of F 0
k and F sk , there exists k̄ such that for all k > k̄

∣∣F 0
k − f(xk) + f(xk + sk)− F sk

∣∣ ≤ βη∆2
k, (17)

holds with probability at least α. Therefore, the set of outcomes satisfying (13), (14), (16), and (17) occurs
with probability at least 2α− 1. In this case

(
mk(xk)−mk(xk + sk)

)
ρk = F 0

k − F sk
=
(
F 0
k − f(xk)

)
+
(
f(xk)−mk(xk)

)
+
(
mk(xk)−mk(xk + sk)

)

+
(
mk(xk + sk)− f(xk + sk)

)
+
(
f(xk + sk)− F sk

)

≥ mk(xk)−mk(xk + sk)− 2κef∆
2
k − βη∆2

k.

Thus, for k > k̄,

ρk ≥ 1− (2κef + βη)∆2
k

mk(xk)−mk(xk + sk)
≥ 1− 2(2κef + βη)∆2

k

‖∇m(xk)‖∆k
≥ η

with probability at least 2α− 1, where the last inequality comes from (15).

Theorem 1. If Assumptions 1–2 are satisfied and α is chosen to satisfy (4), then
{∥∥∇f(xk)

∥∥} converges
in probability to zero. That is, for all ε > 0,

lim
k→∞

P
[∥∥∇f(xk)

∥∥ > ε
]

= 0

Proof. Define the following values:

ψk =

∥∥∇f(xk)
∥∥

∆k
,

L1 = max

{
2νm

1 + κeg,
(1− η)κeg + 2(2κef + βη)

(1− η)
,

2Lg
γinc − 1

,
Lg
γinc

(
1− γdec

γdec
− 1− γinc

γinc

)−1
}
,

L2 = max

{
L1

γdec
, Lg + L1

}
.

9

Before proceeding, we note that, by (4),

2(1− α)

(
1− γdec

γdec

)
+ (2α− 1)

(
1− γinc

2γinc

)
≤ 0. (18)

Consider the case where ψk ≥ L1. Then,

∆k =

∥∥∇f(xk)
∥∥

ψk
≤
∥∥∇f(xk)

∥∥
L1

≤ min

{∥∥∇f(xk)
∥∥

2νm
1 + κeg

,

∥∥∇f(xk)
∥∥ (1− η)

(1− η)κeg + 2(2κef + βη)

}
.

Therefore by Lemma 5, for k sufficiently large, we have successful iterates with probability at least 2α−1.
On those iterates

ψk+1 − ψk =

∥∥∇f(xk+1)
∥∥

γinc∆k
− ψk

≤
∥∥∇f(xk)

∥∥+ Lg∆k

γinc∆k
−
∥∥∇f(xk)

∥∥
∆k

=

∥∥∇f(xk)
∥∥

∆k

1− γinc

γinc
+

Lg
γinc

= ψk
1− γinc

γinc
+

Lg
γinc
≤ 0,

where the last inequality is implied by ψk ≥ L1 ≥ 2Lg/(γinc − 1).

On unsuccessful iterates, which occur with probability at most 2(1 − α), ψk+1 =
ψk
γdec

or ψk+1 − ψk =
(

1

γdec
− 1

)
ψk. Note that since

ψk ≥ L1 ≥
Lg
γinc

(
1− γdec

γdec
− 1− γinc

γinc

)−1

,

this implies

ψk
1− γinc

γinc
+

Lg
γinc
≤
(

1

γdec
− 1

)
ψk.

Considering both successful iterates and unsuccessful steps together, we have

E [ψk+1|Fk]− ψk ≤ (2α− 1)

[
ψk

1− γinc

γinc
+

Lg
γinc

]
+ 2(1− α)

(
1

γdec
− 1

)
ψk

= (2α− 1)

[
ψk

1− γinc

2γinc
+

Lg
γinc

]
+ ψk

[
2(1− α)

(
1

γdec
− 1

)
+ (2α− 1)

1− γinc

2γinc

]

≤ (2α− 1)

[
ψk

1− γinc

2γinc
+

Lg
γinc

]
, (19)

where the last inequality holds by (18).

Define a =
(γinc − 1)(2α− 1)

2γinc
and b = max

{
L2,

(2α− 1)Lg
γinc

}
and note that 0 < a < 1. If ψk ≥ L1,

rearranging (19) yields

E [ψk+1|Fk] ≤
[

(2α− 1)(1− γinc)

2γinc
+ 1

]
ψk+1 +

(2α− 1)Lg
γinc

≤ (1− a)ψk + b.

10

When ψk ≤ L1, on unsuccessful iterates

ψk+1 =
ψk
γdec

≤ L1

γdec
≤ L2,

and on successful iterates

ψk+1 =

∥∥∇f(xk+1)
∥∥

γinc∆k
≤ Lg∆k +

∥∥∇f(xk)
∥∥

γinc∆k
≤ Lg∆k +

∥∥∇f(xk)
∥∥

∆k
= Lg + ψk ≤ Lg + L1 ≤ L2.

If ψk ≤ L1,
ψk+1 ≤ L2 ≤ b ≤ (1− a)ψk + b.

Therefore, independent of the value of ψk, E [ψk+1|Fk] ≤ (1− a)ψk + b, and

E [ψk+1|Fk−1] = E [E [ψk+1|Fk] |Fk−1] ≤ (1− a)E [ψk|Fk−1] + b. (20)

Continuing in this fashion,

E [ψk+1|Fk−2] = E [E [ψk+1|Fk−1] |Fk−2]

≤ (1− a)E [E [ψk|Fk−1] |Fk−2] + b by (20)

≤ (1− a) [(1− a)E [ψk−1|Fk−2] + b] + b

= (1− a)2 E [ψk−1|Fk−2] + [(1− a) + 1] b.

Therefore,

E [ψk+1|F0] ≤ (1− a)kψ0 + b

k−1∑

j=0

(1− a)j

≤ (1− a)kψ0 +
b

a

≤ ψ0 +
b

a
.

Defining c = ψ0 +
b

a
, we have shown that E [ψk|F0] ≤ c for all k. For any ε > 0,

P
[∥∥∇f(xk)

∥∥ > ε|F0

]
= P

[
ψk >

ε

∆k
|F0

]

= P
[
ψk >

ε

∆kc
c|F0

]

≤ P
[
ψk >

ε

∆kc
E [ψk|F0] |F0

]

≤ c∆

ε
.

Since ∆k → 0 almost surely, P
[∥∥∇f(xk)

∥∥ > ε|F0

]
→ 0.

5 Numerical Results

We now compare four algorithms on a broad suite of stochastic optimization problems. Specifically, we com-
pare three existing stochastic approximation methods—simultaneous perturbation stochastic approximation
(SPSA), Kiefer-Wolfowitz (KW), and the stochastic version of QNSTOP [1]—and a prototype of Algorithm 1,

11

Table 1: Three relevant values of ρŝ and their interpretations.
Value Interpretation
ρŝ(1) Fraction of problems method ŝ solves first.
ρŝ(α̂) Fraction of problems method ŝ solves in fewer than α̂ times the number of

function evaluations required by the best method.
lim
α̂→∞

ρŝ(α̂) Fraction of problems method ŝ eventually solves.

which is described in Section 5.2. The MATLAB implementations for a prototype of Algorithm 1, KW, and
SPSA are available online at

mcs.anl.gov/∼jlarson/Stochastic.
For SPSA and KW, we obtained MATLAB implementations from the website for Spall’s textbook [25].
Specifically, we extracted MATLAB code for each algorithm from the file SP vs FD.txt to create separate
MATLAB functions for each algorithm. We obtained the Fortran code for QNSTOP from Layne Watson.

5.1 Test set

The benchmark suite used to compare the different algorithms consists of the 53 stochastic problems from
[16], where the computed function value has the form

f̄(x) =

m∑

i=1

[Fi(x)]
2

+ ε

(
m∑

i=1

[
Fi(x

0)
]2 − Fi(x̂∗)

)
, (21)

where r ∼ U [−0.1, 0.1], x0 is a predefined starting point, and x̂∗ is an estimate of the global minimum of
the noiseless problem. The dimension of the 53 problems ranges from 2 to 12, and each method is given at
most 5,000 function evaluations to solve each problem.

Although all the methods can access only the noise-corrupted values f̄ when deciding which points to
evaluate, the noiseless function value f (i.e., (21) with r = 0) is used in all benchmarking results. Because
the methods are solving problems that are stochastic, each method was given 10 attempts to solve each of
the 53 problems.

The relative performances of the three algorithms were compared by using performance profiles [11, 16].
If S is the set of optimization algorithms to be compared on a suite of problems P , let tp̂,ŝ be the number
of function evaluations required for method ŝ ∈ S on a problem p̂ ∈ P to find a function value satisfying

f(x) ≤ fL + τ
(
f(x0)− fL

)
,

where fL is the best function value achieved by any ŝ ∈ S. That is, we consider problem p̂ to be “solved” by
method ŝ in tp̂,ŝ function evaluations when the method finds a function value less than τ times the reduction
found by the best method. The performance profile of a solver ŝ ∈ S is the following fraction:

ρŝ(α̂) =
1

|P |

∣∣∣∣
{
p̂ ∈ P :

tp̂,ŝ
min {tp̂,ŝ : ŝ ∈ S} ≤ α̂

}∣∣∣∣ .

The performance measure ρŝ attempts to capture the relative performance of ŝ versus that of the other
methods in S on the set of problems P . Some relevant values of ρŝ are given in Table 1.

5.2 Description of prototype

To specify a particular implementation of Algorithm 1, we need to define how the model functions mk and
approximations F 0

k and F sk are constructed and how the trust region subproblem is solved to compute sk.
For our prototype algorithm, we used the following simple strategies.

12

1. At the kth iteration, the model function mk is constructed by using least-squares regression on a sample
set of (n+ 1)ζk sample points, where ζk is defined by

ζk =

⌈
k

108 min {1,∆4
k}

⌉
.

The sample set consists of ζk randomly rotated copies of the set {xk, xk + ∆ke1, . . . , x
k + ∆ken},

resulting in a strongly 1-poised set of points.

2. Since the model functions are linear, the trust region subproblem has the solution

sk = −∆k
∇mk(xk)

‖∇mk(xk)‖ .

3. The function approximations F 0
k and F sk are computed by building linear model functions m0

k and ms
k

and evaluating F 0
k = m0

k(xk) and F sk = ms
k(xk + sk). The model functions are constructed by using

least-squares regression on sample sets consisting of

ζk =

⌈
k

108a4
k min {1,∆4

k}

⌉

randomly rotated copies of the sets {xk, xk + ak∆ke1, . . . , x
k + ak∆ken} and {xk + sk, xk + sk +

ak∆ke1, . . . , x
k + sk + ak∆ken}, respectively, where ak is the fraction of the trust region radius ∆k

that will be used to build the models F 0
k and F sk .

4. The following parameter values are used: γdec = 0.5, γinc = 2, ak = 0.99k, η = 10−6, β = 0.5, ∆0 = 1,
and k = 0.

We make the following notes about the prototype outlined above.

1. The formula for ζk ensures that for k sufficiently large, F 0
k and F sk satisfy (5) and (6), as shown by

Proposition 2. The 108 term ensures that the number of copies is relatively small until ∆k is fairly
small. Nevertheless, for k sufficiently large, the model functions mk still are α-probabilistically κ-fully
linear on B(xk; ∆k), for some κ, where α is defined by (4). Therefore, we need not explicitly define
the parameters {αk}.

2. The strategy above is inefficient in how it manages previous function evaluations, building every model
with an entirely new set of points. We chose this approach because the proof of Proposition 3 requires
that the function evaluations are independent processes; this cannot be directly assumed when using
previously evaluated points. A more practical implementation would reuse old function values in
constructing the model functions. Nevertheless, even though we throw out all previous function values,
this prototype still outperforms SPSA and KW on a benchmark set of problems.

For SPSA and KW, the constants used to determine the sequence of step sizes follow the recommendations
in Sections 6.6 and 7.5.2 of [25]. Specifically, for both algorithms we set the sequence of step sizes to

ak =
1

(k + 1 +A)0.602
and the sequence of finite-difference parameters to ck =

1

(k + 1)0.101
, respectively,

where A is one-tenth of the total budget of function evaluations per Spall’s recommendations.
Because QNSTOP requires bound constraints, we set the domain for each problem to be

{
x :
∥∥x− x0

∥∥
∞ ≤ 10 ‖x− x̂∗‖2

}
,

where x̂ is an estimate of the problem’s global minimum and x0 is the starting point given to all algorithms.
Each algorithm was run on the 53 problems 10 times to create a set of 530 test problems. Figure 1

shows performance profiles for the four algorithms on this set of problems for τ = 0.1 and τ = 0.01. These

13

� Keifer-Wolfowitz◦ SPSA
△ OurPrototpye
▽ QNSTOP

ρ
(α̂

)

α̂

τ = 10−1

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

� Keifer-Wolfowitz◦ SPSA
△ OurPrototpye
▽ QNSTOP

ρ
(α̂

)

α̂

τ = 10−2

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Performance profiles for four methods on a benchmark suite of stochastic problems.

tolerances imply that we consider the method to have located a sufficiently accurate solution for a problem
if it finds a point where the true function value is within one-tenth (resp. one-hundredth) of the reduction
found by the best solver on that problem. Since the absolute noise for the problems in the benchmark
suite is one-tenth of the possible decrease in f , we consider τ = 0.1 to be especially relevant. We can see
that the prototype significantly outperforms QNSTOP, SPSA, and KW on the benchmark set of problems,
solving 60% of the problems first and 75% of the problems within the alloted 5,000 function evaluations. All
experimental results and performance profiles can be recreated by using the MATLAB scripts available at
the aforementioned website.

6 Conclusion

In this paper, we present a trust region algorithm for minimizing a function when only noise-corrupted
function values are available. Contrary to most other algorithms that solve this problem, our algorithm
does not require a fixed pattern of points to build the local models, does not require repeated sampling, and
adjusts its step sizes depending on how well the models approximate the behavior of the function.

The algorithm is designed to handle both stochastic and deterministic noise. However, our analysis
considers only the case of stochastic noise. In this case, our main convergence result is that, under appropriate
assumptions, the function gradients converge in probability to zero. While this is a relatively weak form of
convergence, it is still useful in practice because it ensures that if the algorithm is terminated after a large
number of iterations, then the function gradient at the last iterate will be small with high probability.

The strategy of avoiding repeated sampling is essential in the case of deterministic noise because repeated
function evaluations at the same point provide no additional information. In the case of stochastic noise,
the advantage of this strategy is less clear. For example, our implementation avoids repeated sampling at
the cost of evaluating a large number of function values at nearby points. Conceptually, this strategy offers
a potential advantage because sampling at distinct points provides information about the behavior of the
function, whereas repeated sampling does not. However, translating this into a computational advantage
remains a topic for further research.

We note that the ultimate goal is to modify this algorithm so it converges while still using every point
that has been evaluated. Using every point greatly complicates convergence analysis because negative bias
in the noise can cause convergence to points that are not stationary points of f . This algorithm does not

14

fully achieve this goal because one may still need to remove old points depending on how the local models are
constructed. Nevertheless, a prototype of our algorithm that uses no previously evaluated point to construct
any local model is seen to outperform existing stochastic approximation methods.

Acknowledgements

We thank Alexandre Proutiere for providing critical insights that allowed this work to be completed. We also
thank Katya Scheinberg and an anonymous referee for alerting us to errors in earlier drafts of our analysis.
We thank Layne Watson for sending us the Fortran code for QNSTOP. This material is based upon work
supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357. We
thank Gail Pieper for her useful language editing.

Appendix

We now prove a sequence of results culminating in a theorem showing that a model regressing a sufficiently
large, strongly Λ-poised set of points will be α-probabilistically κ-fully linear.

Lemma 6. Let f be continuously differentiable on Ω, and let m(x) denote the linear model regressing a set
of strongly Λ-poised points Y =

{
y0, . . . , yp

}
. Then, for any x ∈ Ω the following identities hold:

1. m(x)− f(x) =

p∑

i=0

Gi(x)T (yi − x)`i(x) +

p∑

i=0

εi`i(x),

2. ∇m(x)−∇f(x) =

p∑

i=0

Gi(x)T (yi − x)∇`i(x) +

p∑

i=0

εi∇`i(x),

where εi denotes the noise at yi, `i is the ith Lagrange polynomial, and Gi(x) = ∇f(vi(x))−∇f(x) for some
point vi(x) = θx+ (1− θ)yi, 0 ≤ θ ≤ 1 on the line segment connecting x to yi.

Proof. The proof is nearly identical to that of [4, Lemma 4.5].

The following lemma is similar to [4, Lemma 4.4].

Lemma 7. Given a sample set Y =
{
y0, . . . , yp

}
⊂ Rn, let Ŷ =

{
ŷ0, . . . , ŷp

}
be the shifted and scaled

sample set defined by ŷi = (yi− ȳ)/R for some R > 0 and ȳ ∈ Rn. Let φ = {φ0(x), . . . , φq(x)} be a basis for

Pdn, and define the basis φ̂ =
{
φ̂0(x), . . . , φ̂q(x)

}
by φ̂i(x) = φi(Rx+ ȳ), i = 0, . . . , n. Let {`0(x), . . . , `p(x)}

be regression Lagrange polynomials for Y , and let
{

ˆ̀
0(x), . . . , ˆ̀

p(x)
}

be regression Lagrange polynomials for

Ŷ . Then M(φ, Y) = M(φ̂, Ŷ). Moreover, if Y is poised, then

`j(x) = ˆ̀
j

(
x− ȳ
R

)
, for j = 0, . . . , p.

Proof. The proof is identical to that of [4, Lemma 4.4]. (Note that the wording there gives specific choices
for R, ȳ and φ; however, its proof does not rely on these choices).

Lemma 8. Let Y = {y0, . . . , yp} ⊂ B(y0; ∆) be a strongly Λ-poised sample set on B(y0; ∆). Let `(x) =

(`0(x), . . . , `p(x))
T

, where `j(x), j = 0, . . . , p, are the regression Lagrange polynomials or order d for Y . Let
q + 1 denote the dimension of Pdn. Then for any x ∈ B(y0; ∆),

‖∇`(x)‖ ≤ (q + 1)θ̂

∆
√
p+ 1

Λ,

where θ̂ is a constant that depends on n and d but is independent of Y and Λ.

15

Proof. Let Ŷ =
{
ŷ0, . . . , ŷp

}
be the shifted and scaled sample set defined by ŷi = (yi − y0)/∆.

Let φ̄ =
{
φ̄0(x), . . . , φ̄q(x)

}
be a basis for Pd, and define the basis φ̂ =

{
φ̂0(x), . . . , φ̂q(x)

}
, by φ̂i(x) =

φ̄i(∆x + y0), i = 0, . . . , n. Let {`0(x), . . . , `p(x)} be the regression Lagrange polynomials for Y , and let{
ˆ̀
0(x), . . . , ˆ̀

p(x)
}

be the regression Lagrange polynomials for Ŷ .

Let M = M(φ̂, Ŷ) (defined in (2)). By the proof of [8, Lemma 4.12],
∥∥M(MTM)−1

∥∥ ≤ (q + 1)θ̄√
p+ 1

Λ for

some θ̄ > 0 that depends on n and d but is independent of Y and Λ. (Note that the statement of [8, Lemma
4.12] assumes max

i

∥∥ŷi
∥∥ = 1; however, its proof does not rely on this assumption.) Thus, for any x ∈ B(0; 1),

∥∥∥∇ˆ̀(x)
∥∥∥ =

∥∥∥M(MTM)−1∇φ̂(x)
∥∥∥ ≤ (q + 1)θ̄√

p+ 1
Λ
∥∥∥∇φ̂(x)

∥∥∥ ≤ (q + 1)θ̂√
p+ 1

Λ,

where θ̂ = θ̄ max
x∈B(0;1)

∥∥∥∇φ̂(x)
∥∥∥. By Lemma 7,

‖∇`(x)‖ =
1

∆

∥∥∥∥∇ˆ̀
(
x− y0

∆

)∥∥∥∥ ≤
(q + 1)θ̂

∆
√
p+ 1

Λ.

We now use the preceding three results to bound the error between the function and a linear model
regressing a strongly Λ-poised set of p+ 1 points.

Proposition 1. Let f : Rn → R be a continuously differentiable function with Lipschitz continuous gradient
with constant Lg. Let x̄ ∈ Rn, Λ > 0 and ∆ > 0. Let Y = {y0, . . . , yp} ⊂ B(x̄; ∆) be a strongly Λ-poised
set of sample points with y0 = x̄. For i ∈ {0, . . . , p}, let f̄i = f(yi) + εi, where the noise εi is sampled from
a random distribution with mean 0 and variance σ2 < ∞. Let m : Rn → R be the unique linear polynomial
approximating the data {(yi, f̄i), i = 0, . . . , p} by least-squares regression. There exist constants C̄ and ā such
that for any a > ā the following inequalities hold:

1. P
[

max
z∈B(x;∆)

|m(z)− f(z)| > a∆2

]
≤ C̄σ2Λ2

(a− ā)2(p+ 1)∆4
; and

2. P
[

max
z∈B(x;∆)

‖∇m(z)−∇f(z)‖ > a∆

]
≤ C̄σ2Λ2

(a− ā)2(p+ 1)∆4
.

Proof. Let {`0(x), . . . , `p(x)} be the linear regression Lagrange polynomials for the set Y =
{
y0, . . . , yp

}
.

Define `(z) = [`0(x), . . . , `p(x)]
T

. Define ε = [ε0, . . . , εp]
T

, and note that E [εiεj] = 0 for i 6= j. Define
Z0(x) = εT `(x). Then

E
[
Z0(x̄)2

]
= E

(

p∑

i=0

εi`i(x̄)

)2

 =

p∑

i=0

E
[
ε2i
]
`i(x̄)2 = σ2

p∑

i=0

`i(x̄)2 = σ2 ‖`(x̄)‖2 ≤ σ2(n+ 1)2Λ2

p+ 1
, (22)

where the last inequality follows from Definition 2 and the assumption that Y is strongly Λ-poised on B(x̄; ∆).
Because Z0 is a linear function, its Jacobian matrix is constant. Denote this matrix by Z1 = ∇Z0(x̄) =

εT∇`(x̄). Then,

E
[
‖Z1‖2

]
=

p∑

i=0

E
[
ε2i
]
∇`i(x̄)T∇`i(x̄) = σ2Tr

(
∇`(x̄)∇`(x̄)T

)

= σ2 ‖∇`(x̄)‖2F ≤ σ2(n+ 1) ‖∇`(x̄)‖22

≤ σ2(n+ 1)3θ̂2Λ2

∆2(p+ 1)
, by Lemma 8 , (23)

16

where θ̂ is a constant that depends on n but is independent of Y and Λ.
Next, observe that for any z ∈ B(x̄; ∆), ‖Z0(z)‖2 = ‖Z0(x̄) + Z1(z − x̄)‖2 ≤ (‖Z0(x̄)‖+ ∆ ‖Z1‖)2 ≤

2 ‖Z0(x̄)‖2 + 2∆2 ‖Z1‖2. Combining this with (22) and (23) yields the inequality

E
[

max
z∈B(x̄;∆)

‖Z0(z)‖2
]
≤ 2σ2(n+ 1)2Λ2

p+ 1
+

2σ2(n+ 1)3θ̂2Λ2

p+ 1
= C0

σ2Λ2

p+ 1
,

where C0 = 2(n+ 1)2
(

1 + (n+ 1)θ̂2
)

.

By Markov’s inequality, for any a > 0,

P [‖Z1‖ ≥ a∆] = P
[
‖Z1‖2 ≥ a2∆2

]
≤

E
[
‖Z1‖2

]

a2∆2
≤ σ2(n+ 1)3θ̂2Λ2

a2∆4(p+ 1)
,

and

P
[

max
z∈B(x̄;∆)

‖Z0(z)‖ ≥ a∆2

]
≤

E
[
maxz∈B(x̄;∆) ‖Z0(z)‖2

]

a2∆4
≤ C0σ

2Λ2

a2∆4(p+ 1)
.

Define gi(z) = Gi(z)
T (yi−z), where Gi(z) is defined in Lemma 6. Let g(z) = [g0(z), . . . , gp(z)]

T
. Because

∇f is Lipschitz continuous, |gi(z)| ≤ 2Lg∆
2 and ‖g(z)‖ ≤ 2

√
p+ 1Lg∆

2. By Lemma 6,

‖∇m(z)−∇f(z)‖ =
∥∥(g(z)T + εT

)
∇`(x̄)

∥∥

≤ 2
√
p+ 1Lg∆

2 ‖∇`(x̄)‖+ ‖Z1‖
≤ 2Lg∆(n+ 1)θ̂Λ + ‖Z1‖ , by Lemma 8.

Thus,

P
[

max
z∈B(x̄;∆)

‖∇m(z)−∇f(z)‖ ≥ a∆

]
≤ P

[
‖Z1‖ ≥

(
a− 2Lg(n+ 1)θ̂Λ

)
∆
]

≤ σ2(n+ 1)3θ̂2Λ2

(
a− 2Lg(n+ 1)θ̂Λ

)2

∆4(p+ 1)
=

C1σ
2Λ2

(a− ā1)2(p+ 1)∆4
,

where C1 = (n+ 1)3θ̂2 and ā1 = 2Lg(n+ 1)θ̂Λ.

By Definition 2, ‖`(z)‖ ≤ n+ 1√
p+ 1

Λ. Thus, by Lemma 6,

|m(z)− f(z)| =
∣∣∣(g(z) + ε)

T
`(z)

∣∣∣
≤ ‖g(z)‖ ‖`(z)‖+ ‖Z0(z)‖

≤ 2Lg
√
p+ 1∆2 (n+ 1)Λ√

p+ 1
+ ‖Z0(z)‖ = 2Lg∆

2(n+ 1)Λ + ‖Z0(z)‖ .

Thus,

P
[

max
z∈B(x̄;∆)

|m(z)− f(z)| ≥ a∆2

]
≤ P

[
max

z∈B(x̄;∆)
‖Z0(z)‖ ≥ (a− 2Lg(n+ 1)Λ) ∆2

]

≤ C0
σ2Λ2

(a− 2Lg(n+ 1)Λ)
2

∆4(p+ 1)
= C0

σ2Λ2

(a− ā2)
2

∆4(p+ 1)
,

where ā2 = 2Lg(n+ 1)Λ. The result follows with ā = max{ā1, ā2} and C̄ = max{C0, C1}.

We now show that the models F 0
k and F sk can easily be constructed to satisfy Conditions 1 and 2.

17

Proposition 2. Let f : Rn → R be a Lipschitz continuously differentiable function. Let {ck}, {∆k}, and
{ak} be positive sequences such that ck → +∞ and ak ↓ 0. Let {xk} and {sk} be sequences in Rn with

∥∥sk
∥∥ ≤

∆k. Let Λ > 0, for each k define δk = min{∆k, 1}, and let Y 0
k ⊂ B

(
xk; akδk

)
and Y sk ⊂ B

(
xk + sk; akδk

)
be

strongly Λ-poised sample sets with at least ck/(akδk)4 points each. Let m0
k and ms

k be the linear polynomials
fitting the computed function values on the sample sets Y 0

k and Y sk , respectively, by least-squares regression.
Define F 0

k = m0
k

(
xk
)

and F sk = ms
k

(
xk + sk

)
. Then {F 0

k } and {F sk} satisfy Conditions 1 and 2.

Proof. Let C̄ and ā be the constants defined in Proposition 1. Since ak ↓ 0 and ck → +∞, then for any ω > 0

there exists k̄(ω) such that for all k > k̄(ω), 2ā (akδk)
2
<
βη

2
δ2
k ≤

βη

2
min{∆k,∆

2
k} and

C̄σ2Λ2

ā2 |Y 0
k | a4

kδ
4
k

≤ ω/2.

Thus,

P
[∣∣F 0

k − f(xk)
∣∣ > βη

2
δ2
k

]
≤ P

[∣∣m0
k(xk)− f(xk)

∣∣ > 2ā (akδk)
2
]

≤ C̄σ2Λ2

ā2 ‖Y 0
k ‖ a4

kδ
4
k

by Proposition 1

≤ ω

2
.

Using the same argument, we can show that

P
[∣∣F sk − f(xk + sk)

∣∣ > βη

2
δ2
k

]
≤ ω

2
.

Thus, for k > k̄(ω),

P
[∣∣F 0

k − f(xk)− F sk + f(xk + sk)
∣∣ > βηmin

{
∆k,∆

2
k

}]
≤ P

[∣∣F 0
k − f(xk)

∣∣ > βη

2
δ2
k

]
+P
[∣∣F sk − f(xk + sk)

∣∣ > βη

2
δ2
k

]
≤ ω,

so Condition 1 is satisfied.

To prove that Condition 2 holds, observe that for k > k̄(1), (βη + ξ) δ2
k >

(
2ā+

ξ

a2
k

)
a2
kδ

2
k. Thus,

P
[∣∣F 0

k − f(xk)
∣∣ > βη + ξ

2
δ2
k

]
≤ P

[∣∣m0
k(xk)− f(xk)

∣∣ >
(

2ā+
ξ

a2
k

)
(akδk)

2

]

≤ C̄σ2Λ2

(ā+ ξ/a2
k)

2 ‖Y 0
k ‖ a4

kδ
4
k

by Proposition 1

≤ ā2

2(ā+ ξ/a2
k)2
≤ ā2a2

k

4ξ
≤ θ

2ξ
,

for the constant θ = max
k

āa2
k/2. Similarly, we can show that P

[∣∣F sk − f(xk + sk)
∣∣ > βη + ξ

2
δ2
k

]
≤ θ

2ξ
. It

follows that

P
[
F 0
k − f(xk) + f(xk + sk)− F sk > (βη + ξ) min

{
∆k,∆

2
k

}]
≤ P

[∣∣F 0
k − f(xk)

∣∣ > βη + ξ

2
δ2
k

]

+ P
[∣∣F sk − f(xk + sk)

∣∣ > βη + ξ

2
δ2
k

]
<
θ

ξ
.

This proves that Condition 2 is satisfied.

We next show that models built using our proposed method are α-probabilistically κ-fully linear.

18

Proposition 3. Let f : Rn → R be a continuously differentiable function with Lipschitz continuous gradient
with constant Lg. Let x̄ ∈ Rn, Λ > 0 and ∆ > 0. Let Y = {y0, . . . , yp} ⊂ B(x̄; ∆) be a strongly Λ-poised
set of sample points with y0 = x̄. For i ∈ {0, . . . , p}, let f̄i = f(yi) + εi, where the noise εi is sampled from
a random distribution with mean 0 and variance σ2 < ∞. Let m : Rn → R be the unique linear polynomial
approximating the data {(yi, f̄i), i = 0, . . . , p} by least-squares regression. Let α ∈ (0, 1) be given. There
exists a positive constant Ĉ depending only on Λ, and Lg and constants κ = (κef , κeg) depending only on Λ,

α, and Lg, such that if p ≥ Ĉ

∆4
k

, then m is α-probabilistically κ-fully linear.

Proof. Let C̄ and ā be defined as in Proposition 1. Defining κef = κeg = a = ā + 1 and Ĉ =
C̄σ2Λ2

1− α
2

, if

p ≥ Ĉ

∆4
− 1, then by Proposition 1, we have

P
[

max
z∈B(x;∆)

|m(z)− f(z)| > κef∆
2

]
≤ C̄σ2Λ2

(p+ 1)∆4
≤ 1− α

2

and

P
[

max
z∈B(x;∆)

‖∇m(z)−∇f(z)‖ > κeg∆

]
≤ C̄σ2Λ2

(p+ 1)∆4
≤ 1− α

2
.

Therefore, for any y ∈ B(x̄,∆),

P
[
‖∇f(y)−∇m(y)‖ ≤ κeg∆ and |f(y)−m(y)| ≤ κef∆

2
]
≥ α,

and the model is α-probabilistically κ-fully linear.

One can easily test whether a set Yk, with |Yk| >
C

∆k
is strongly Λ-poised by using Theorem 4.12 in [8].

A partial set of points that are not strongly Λ-poised can be completed to a strongly Λ-poised set by using
Algorithm 6.7 in [8].

References

[1] Amos, B.D., Easterling, D.R., Watson, L.T., Castle, B.S., Trosset, M.W., Thacker, W.I.: Fortran 95
Implementation of QNSTOP for Global and Stochastic Optimization. In: Proceedings of the High
Performance Computing Symposium, pp. 15:1–15:8. Society for Computer Simulation International,
San Diego, CA, USA (2014)

[2] Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of Trust-Region Methods Based on Proba-
bilistic Models. SIAM Journal on Optimization 24(3), 1238–1264 (2014)

[3] Bastin, F., Cirillo, C., Toint, P.L.: An Adaptive Monte Carlo Algorithm for Computing Mixed Logit
Estimators. Computational Management Science 3(1), 55–79 (2006)

[4] Billups, S.C., Larson, J., Graf, P.: Derivative-Free Optimization of Expensive Functions with Compu-
tational Error Using Weighted Regression. SIAM Journal on Optimization 23(1), 27–53 (2013)

[5] Box, G., Wilson, K.: On the Experimental Attainment of Optimum Conditions. Journal of the Royal
Statistical Society. Series B (Methodological) 13(1), 1–45 (1951)

[6] Chang, K.H., Hong, L.J., Wan, H.: Stochastic Trust-Region Response-Surface Method (STRONG)–
A New Response-Surface Framework for Simulation Optimization. INFORMS Journal on Computing
25(2), 230–243 (2012)

19

[7] Chen, R., Menickelly, M., Scheinberg, K.: Stochastic Optimization Using a Trust-Region Method and
Random Models (2015). Preprint http://arxiv.org/abs/1504.04231

[8] Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Society for
Industrial and Applied Mathematics (2009)

[9] Deng, G., Ferris, M.C.: Adaptation of the UOBYQA Algorithm for Noisy Functions. In: Proceedings
of the 2006 Winter Simulation Conference, pp. 312–319. IEEE (2006)

[10] Deng, G., Ferris, M.C.: Extension of the Direct Optimization Algorithm for Noisy Functions. In:
Proceedings of the 2007 Winter Simulation Conference, pp. 497–504. IEEE (2007)

[11] Dolan, E.D., Moré, J.J.: Benchmarking Optimization Software with Performance Profiles. Mathematical
Programming 91(2), 201–213 (2002)

[12] Dupuis, P., Simha, R.: On Sampling Controlled Stochastic Approximation. IEEE Transactions on
Automatic Control 36(8), 915–924 (1991)

[13] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian Optimization without the Lipschitz Con-
stant. Journal of Optimization Theory and Applications 79(1), 157–181 (1993)

[14] Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression Function. The Annals
of Mathematical Statistics 23(3), 462–466 (1952)

[15] Larson, J.: Derivative-free Optimization of Noisy Functions. PhD disseration, University of Colorado
Denver (2012)

[16] Moré, J.J., Wild, S.M.: Benchmarking Derivative-free Optimization Algorithms. SIAM Journal on
Optimization 20(1), 172–191 (2009)

[17] Moré, J.J., Wild, S.M.: Estimating Computational Noise. SIAM Journal on Scientific Computing 33(3),
1292–1314 (2011)

[18] Moré, J.J., Wild, S.M.: Estimating Derivatives of Noisy Simulations. ACM Transactions on Mathemat-
ical Software 38(3), 1–21 (2012)

[19] Myers, R.H., Montgomery, D.C., Vining, G.G., Borror, C.M., Kowalski, S.M.: Response Surface
Methodology: A Retrospective and Literature Survey. Journal of Quality Technology 36(1), 53–77
(2004)

[20] Nedić, A., Bertsekas, D.P.: The Effect of Deterministic Noise in Subgradient Methods. Mathematical
Programming 125(1), 75–99 (2009)

[21] Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7(4),
308–313 (1965)

[22] Powell, M.: UOBYQA: Unconstrained Optimization by Quadratic Approximation. Mathematical Pro-
gramming 92(3), 555–582 (2002)

[23] Scheinberg, K.: Using Random Models in Derivative-Free Optimization (2012). Plenary presentation
at “The International Symposium on Mathematical Programming”

[24] Spall, J.C.: Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Ap-
proximation. IEEE Transactions on Automatic Control 37(3), 332–341 (1992)

[25] Spall, J.C.: Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., Hoboken,
NJ, USA (2003)

[26] Tomick, J., Arnold, S., Barton, R.: Sample Size Selection for Improved Nelder-Mead Performance. In:
Proceedings of the 1995 Winter Simulation Conference, pp. 341–345. IEEE (1995)

20

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

